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The derivative of (7) has, by virtue of the equations of perturbed motion, the form
V' = @'V, / I, = 0, and this is correct since V, — 0. Therefore, on the basis of the
Rumiantsev theorem [4] the inequality (8) is a sufficient condition of stability of the unper
turbed motion (2) with respect to the variables p — wy1, ¢, 7, a2 and 7vs-

The unstable permanent rotations (2) can be separated out by considering the linear-
ized system of equations of perturbed motion

z" = (1 — 0) 0 (lyz; + lpzs) — u'ys — Lgs’ys T = (0 — 1) @ (lgz + (9

Lzg) + ug’y pi' = — lgza + laxg + @ (Ugya — lLoys)y ¥y = Lz —
olyy;, Y3 = — Lz, + o0y, 25 =0
The characteristic equation of (9) has the form
o (0% 4 go) = 0, go = 0 [1 + (1 — 8)2 1¥] — ugs’ly’ + 2us’ly (10)

It is clear that when g, << 0 ,one of the roots of (10) is positive and the motion (2)
in its first approximation will, by the Liapunov theorem on stability, be unstable.
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The results of this paper can be regarded as a transposition of the results of Che-~
taev obtained for the finite systems of differential equations [1] to the denumer-
able systems of the finite difference equations, We use the concepts of [2].

Let us consider the system

00
y,(m+1) = p, My, (m), m=01,... (1
i=1
Here and henceforth s =1, 2, ..., the functions p,; are bounded and the series
| Poy (M) | 4+ | pea (m) | + - - - converge uniformly in m for 0  m < oo. We define

|y (m) || = sups | ys (m) .
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We use the following system with constant coefficients:

o0
2, (1) =) ¢z, (m) (2)
i=1
as the approximate system for solving the problem of stability of (1). We set
L=sup, 3| |csi] (3)
i=1

We shall say that the zero (unperturbed) solution z, (m) = 0 of system (2) is exponent-
ially stable if all perturbed solutions of this system obey for all m > m, the law [3]

I (m) | < B| = (me) | exp [— a (m — md)] (4)

where B> 1 and > 0 are independent of m, and unaffected by the choice of s (mo)
from the region |z (m,) | < e, where & is sufficiently small. We shall say in a similar
manner of the solutions of the system (1).

Theorem 1. Let the system (1) and system (2) with constant coefficients be both
given, and connected by the relation

SUP,Squ{le“(m)-—cul, me < m < oo, s=1,2,...}<M<oo (%)
i=1

If the zero solution of (2) is exponentially stable, then for sufficiently small M the zero
solution of (1) will also be exponentially stable.

Proof., Let T=oalln4B +1(r>0) (6)

8 =e/(2B) (D

where a and B are quantities given by (4) and e is an arbitrary positive number for
which the inequality (4) holds,
We consider the solutions y, (m) and z¢ (m) of (1) and (2), determined by the initial

conditions by (mo)l = | = (mo) | < (8)
From (4), taking into account (8) and (7) we obtain
Iz (@)l <e/2 for m>me 9

Further, taking into account (8) and (6) and setting m = m, - T, we obtain from (4)

12 (mo +T)| < B/4 (10)
Next we shall prove the inequality
MB8B[(L 4+ MY™ ™ — /(L4 M —1)
Amz—lly(m)—Z(m)lK{ when L4+ M =14 (11)
M3B(m —mo) when L 4 M =1

We write (1) in the form - -
Y, (m 1) =D ¢, (m) + D) [p,; (m) — ¢ 1y, (m) (12)

i=1 i=1
From (12) and (2), using (3) and (5) we obtain Ap+y << LAy, + My (m)]. Since
fz(m) | < Ay 4| ¥ (m) ||, taking (4) and (8) into account, we find that Amsy < (L -
M)A,, + M8B. Replacing m in this inequality by mg, mg -1, mg +2, . . ., m — 1
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and taking (8) into account, we obtain the inequality (11).
Obviously, we can choose A in (11) such that
A, <84 for m<m<<m+T (13)
Further, using (13),(9),(7) and (10), we obtain
lym|<e for moKm<m 4T
y (mo + T) | << 8/2

We take m, 4 T as the initial value and consider the solutions of (1) and (2) deter-
mined by the initial conditions

1y (mo+T) =z (m+T)|< /2
and repeat all the above arguments beginning with the inequality (8). Let us assume that
[y (mi<e/27 for my 4 (r—1)T <m< mg+nl

and n
fly (mo+nT) < 82

We shall show that in this case we have
lym)<e/2" for m+nT <m<mo+ (n+1)T (14)
Iy Imo+ (n +1) T1| < 82" (15)

Taking my, 4 nT as the initial value, we consider the solutions of (1) and (2) determined
by the initial conditions
Iy (o) | = | = (o) | <8 /2™ (Mg = my +nT)

From (4) with m >, and |z (R,) ) <8 /2™ < e/ (B2"*!) we obtain

Izm1<e2™  for m>mo (16)
after which, from (4) with m = my + T and || = () | < &/2" with (6) taken into account,
we obtain 1z (70 4 T) | < 8/2™ (11

The inequality (13) then becomes
A< 82" for m > a (18)
Using (18),(16) and (7) we obtain

lymyl<e/2" for Mo<m<wo+T (19)
Further, using (18) with m = m, -}~ T and (17), we obtain
ly (7o +T)1 < 8/2™1 (20)

Substituting into (19) and (20) the value @, = m, 4 nT, we obtain the inequalities (14)
and (15), and from (14) we obtain
ly (m) 1< 2eexp[— (m —mo) In2/(a-tIn4B - 7)]

which proves the theorem.
We consider, in addition to the systems (1) and (12), the system

y, (m+1) = D} p,; (M) y; (m) + R, [m, y; (m)] (21
i=1
(HR(m:yi)ll<Tﬂ!/||1 i=1y21 . )
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inaregion D:|y(m}[< H, m=0, 1, ... (H = const).

Theorem 2. Let the systems (21) and (2) be connected by a relation of the type
(5). If the zero solution of the system (2) is exponentially stable, then for sufficiently
small ¥ and M the zero solution of the system (21) will also be exponentially stable,

The proof of Theorem 2 differs from that of Theorem 1 only in the fact that M in
the inequality (11) is replaced by M - y.

The author is thankful to G, S, Iudaev for statement of the problem.
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We prove the equivalence of the equations of motion of nonholonomic systems
with constraints linear in velocities, obtained by various methods. At present, the
equations of motion of nonholonomic systems exist in various forms, Naturally,
the question of their identity to each other was brought up in [1— 3], and the
problem was also discussed in [4 — 8] and in the dissertation of M. I, Efimov ( *).

1, The author of [1— 3] postulates that the final form of the equations of motion of
a system obtained by transforming the general dynamic equations depends on the point
at which the equations of nonholonomic constraints are taken into account, He states
that in the general case of arbitrary nonholonomic systems with constraints which are
linear in velocities, the equations constructed by different methods cannot be guaranteed
to be identical. Volterra [9], Appell [10] and MacMillan [11] derive the equations of
motion from the general dynamic equation in Cartesian coordinates and bring the non-
holonomic constraints into the discussion at once. Hamel [12], Chaplygin [13] and Voro-~
nets [14] bring in the nonholonomic constraints after the general dynamic equations have
been transformed to the generalized coordinates. In the opinion of the author of [1—3],
the equations of motion obtained using the methods of Volterra, Appell and MacMillan
on one hand, and the methods of Voronets (Chaplygin) and Hamel on the other hand,will
not, in general, be identical, i.e. the systems of equations will not be equivalent to each

*) Efimov, M, I., On the Chaplygin equations for nonholonomic systems. Gandi-
date's dissertation, Inst, mekhaniki, Akad. Nauk SSSR, 1953.



